NDepend

Improve your .NET code quality with NDepend

You have no excuse for dead code.

You Have No Excuse for Dead Code

In darker times, software management would measure productivity as a function of lines of code.  More code means more done, right?  Facepalm.  When I work with IT management in my capacity as a consultant, I encourage them to view code differently.  I encourage them to view code as a liability, like inventory.  And when useful code is a liability, think of what a boat anchor dead code is.

I once wrote a fun post about the fate of dead code in your codebase.  And while I enjoyed writing that, it had a serious underlying message.  Dead code costs you time, money, and maintenance headaches.  And it has absolutely no upside.

A Working Definition for Dead Code

Okay. If I’m going to make a blog post out of disparaging dead code, I should probably offer a definition.  Let’s do that here.

Some people will draw a distinction between code that can’t be executed (unreachable) and executed code whose effects don’t matter (dead).  I acknowledge this definition but won’t use it here.  For the sake of simplicity and clarity of message, let’s create a single category of dead code: any code in your codebase that has no bearing on your application’s behavior is, for our purposes here, dead.

The Problems with Dead Code

Having defined it, what’s the problem?  If it has no bearing on your application’s behavior, what’s the harm?  How does it cost time and money, as I claimed a moment ago?

Well, simply put, your code does not live in a shrink-wrapped vacuum.  As your application evolves, developers have to change the code.  When you have only code that matters in your codebase, they can do this with the most efficiency.  If, on the other hand, you have thousands of lines of useless code, these developers will spend hundreds of hours maintaining that useless code.

Think of having dead code as being reminiscent of running your heat in the winter while keeping all of your windows open.  It’s self-defeating and wasteful.

But even worse, it’s a totally solvable problem.  Let’s take a look at different types of dead code that you encounter and what you can do about it.

Continue reading You Have No Excuse for Dead Code

Static analysis of .NET Core 2.0 applications

NDepend v2017.3 has just been released with major improvements. One of the most requested features, now available, is the support for analyzing .NET Core 2.0 and .NET Standard 2.0 projects. .NET Core and its main flavor, ASP.NET Core, represents a major evolution for the .NET platform. Let’s have a look at how NDepend is analyzing .NET Core code.

Resolving .NET Core third party assemblies

In this post I’ll analyze the OSS application ASP.NET Core / EntityFramework MusicStore hosted on github. From the Visual Studio solution file, NDepend is resolving the application assembly MusicStore.dll and also two test assemblies that we won’t analyze here. In the screenshot below, we can see that:

  • NDepend recognizes the .NET profile, .NET Core 2.0, for this application.
  • It resolves several folders on the machine that are related to .NET Core, especially NuGet package folders.
  • It resolves all 77 third-party assemblies referenced by MusicStore.dll. This is important since many code rules and other NDepend features take into account what the application code is using.

It is worth noticing that the .NET Core platform assemblies have high granularity. A simple website like MusicStore references no fewer than 77 assemblies. This is because the .NET Core framework is implemented through a few NuGet packages that each contain many assemblies. The idea is to release the application only with needed assemblies, in order to reduce the memory footprint.

.NET Core 2.0 third party assemblies granularity

NDepend v2017.3 has a new heuristic to resolve .NET Core assemblies. This heuristic is based on .deps.json files that contain the names of the NuGet packages referenced. Here we can see that 3 NuGet packages are referenced by MusicStore. From these package names, the heuristic will resolve third-party assemblies (in the NuGet store) referenced by the application assemblies (MusicStore.dll in our case).

NuGet packages referenced in .deps.json file

Analyzing .NET Standard assemblies

Let’s be clear that NDepend v2017.3 can also analyze .NET Standard assemblies. Interestingly enough, since .NET Standard 2.0, .NET Standard assemblies reference a unique assembly named netstandard.dll and found in C:\Users\[user]\.nuget\packages\NETStandard.Library\2.0.0\build\netstandard2.0\ref\netstandard.dll.

By decompiling this assembly, we can see that it doesn’t contain any implementation, but it does contain all types that are part of .NET Standard 2.0. This makes sense if we remember that .NET Standard is not an implementation, but is a set of APIs implemented by various .NET profiles, including .NET Core 2.0, the .NET Framework v4.6.1, Mono 5.4 and more.

Browsing how the application is using .NET Core

Let’s come back to the MusicStore application that references 77 assemblies. This assembly granularity makes it impractical to browse dependencies with the dependency graph, since this generates dozens of items. We can see that NDepend suggests viewing this graph as a dependency matrix instead.

NDepend Dependency Graph on an ASP.NET Core 2.0 project

The NDepend dependency matrix can scale seamlessly on a large number of items. The numbers in the cells also provide a good hint about the represented coupling. For example, here we can see that  22 members of the assembly Microsoft.EntityFrameworkCore.dll are used by 32 methods of the assembly MusicStore.dll, and a menu lets us dig into this coupling.

NDepend Dependency Matrix on an ASP.NET Core 2.0 project

Clicking the menu item Open this dependency shows a new dependency matrix where only members involved are kept (the 32 elements in column are using the 22 elements in rows). This way you can easily dig into which part of the application is using what.

NDepend Dependency Matrix on an ASP.NET Core 2.0 project

All NDepend features now work when analyzing .NET Core

We saw how to browse the structure of a .NET Core application, but let’s underline that all NDepend features now work when analyzing .NET Core applications. On the Dashboard we can see code quality metrics related to Quality Gates, Code Rules, Issues and Technical Debt.

NDepend Dashboard on an ASP.NET Core 2.0 project

Also, most of the default code rules have been improved to avoid reporting false positives on .NET Core projects.

NDepend code rules on an ASP.NET Core 2.0 project

We hope you’ll enjoy using all your favorite NDepend features on your .NET Core projects!

How to Use NDepend’s Trend Charts

Imagine a scene for a moment.  A year earlier, a corporate VP spun up a major software project for his organization.  He brought a slew of his organization’s software developers into the project.  But he also needed to add more staff in the form of contractors.

This strained the budget, so he cut a few corners in terms of team member experience.  The VP reasoned that he could make up for this with strategic use of experienced architects up front.  Those architects would prototype good patterns and make it so the less seasoned contractors could just kind of paint by numbers.  The architects spent a few months doing just that and handed the work off to the contractors.

Fast forward to the present.  Now a consultant sits in a nice office, explaining to a beleaguered VP how they got so far behind schedule.  I can picture this scene quite easily because organizations hire me to be this consultant.  I live this scene over and over again.
Continue reading How to Use NDepend’s Trend Charts

Computing Technical Debt with NDepend

For years, I have struggled to articulate technical debt to non-technical stakeholders.  This struggle says something, given that technical debt makes an excellent metaphor in and of itself.

The concept explains that you incur a price for taking quality shortcuts in the code to get done quickly.  But you don’t just pay for those shortcuts with more work later — you accrue interest.Save yourself an hour today with some copy pasta, and you’ll eventually pay for that decisions with many hours down the road.

So I say to interested, non-technical parties, “think of these shortcuts today as decisions upon which you pay interest down the line.”  They typically squint at me a little and say, “yeah, I get it.”  But I generally don’t think they get it.  At least, not fully.

Lack of Concreteness

I think the reason for this tends to come from a lack of actual units.  As a counterexample, think of explaining an auto loan to someone.  “I’m going to loan you $30,000 to buy a car.  With sales tax and interest factored in, you’ll pay me back over a 5 year period, and you’ll pay me about $36,000 in total.”  Explained this way to a consumer, they get it.  “Oh, I see.  It’ll cost me about $6,000 if I want you to come up with that much cash on my behalf.”  They can make an informed value decision.

But that falls flat for a project manager in a codebase.  “Oh man, you don’t want us to squeeze this in by Friday.  We’ll have to do terrible, unspeakable things in the code!  We’ll create so much tech debt.”

“Uh, okay.  That sounds ominous.  What’s the cost?”

“What do you mean?  There’s tech debt!  It’ll be worse later when we fix it than if we do it correctly the first time.”

“Right, but how much worse?  How much more time?”

“Well, you can’t exactly put a number to it, but much worse!”

And so and and so forth.  I imagine that anyone reading can recall similar conversations from one end or the other (or maybe even both).  Technical debt provides a phenomenal metaphor in the abstract.  But when it comes to specifics, it tends to fizzle a bit.

Continue reading Computing Technical Debt with NDepend